Who's drinking Blue Moon tonight?

Homebrew Talk - Beer, Wine, Mead, & Cider Brewing Discussion Forum

Help Support Homebrew Talk - Beer, Wine, Mead, & Cider Brewing Discussion Forum:

This site may earn a commission from merchant affiliate links, including eBay, Amazon, and others.
Pretty sure we're gonna have clouds as well, which I think makes it even more important to knock back a blue moon or nineteen as a sacrifice to the weather gods.
 
I didn't bother to look outside, but I DID have a Blue Moon Grand Cru on NYE. Not bad, but when you add the 750ml to the couple of other beers, I was feeling it in the morning. Lucky for me nothing too embarrassing happened.
 
I just threw 9 bottles of Blue Moon in the garbage. I bought a 12 pack sometime in early summer for my wife/or somebody and nobody drank them. I only had 3 (which were in times of utter desperation). I got sick of looking at the box sitting on the floor of my garage...so out they went.
 
I just threw 9 bottles of Blue Moon in the garbage. I bought a 12 pack sometime in early summer for my wife/or somebody and nobody drank them. I only had 3 (which were in times of utter desperation). I got sick of looking at the box sitting on the floor of my garage...so out they went.

I've contacted your local authorities.... they're on their way!:mad:
 
heres what i'm waiting for:

Total Solar Eclipse of July 11
The second solar eclipse of 2010 occurs at the Moon's descending node in central Gemini just 45 arc-minutes east of the 3rd magnitude star Delta Geminorum. The path of the Moon's umbral shadow crosses the South Pacific Ocean where it makes no landfall except for Mangaia (Cook Islands), Easter Island (Isla de Pascua) and several isolated atolls. The path of totality ends just after reaching southern Chile and Argentina (Espenak and Anderson, 2008). The Moon's penumbral shadow produces a partial eclipse visible from a much larger region covering the South Pacific and southern South America (Figure 3).

The central eclipse path begins in the South Pacific about 700 km southeast of Tonga at 18:15 UT. Traveling northeast, the track misses Rarotonga - the largest and most populous of the Cook Islands - by just 25 km. The first landfall occurs at Mangaia where the total eclipse lasts 3 minutes 18 seconds with the Sun 14° above the horizon.

The southern coast line of French Polynesia's Tahiti lies a tantalizing 20 km north of the eclipse path and experiences a deep 0.996 magnitude partial eclipse at 18:28 UT. Several cruises are already scheduled to intercept the umbral shadow from Papeete.

Greatest eclipse occurs in the South Pacific at 19:33:31 UT. At this instant, the axis of the Moon's shadow passes closest to Earth's center. The maximum duration of totality is 5 minutes 20 seconds, the Sun's altitude is 47°, and the path width is 259 km. Continuing across the vast Pacific, the umbral shadow's path encounters Easter Island, one of the most remote locations on Earth. From the capital, Hanga Roa, totality lasts 4 minutes 41 seconds with the Sun 40° above the horizon (20:11 UT). The 3,800 inhabitants of the isle are accustomed to tourism, but the eclipse is expected to bring record numbers to this unique destination.

The Moon's shadow sweeps across another 3700 km of open ocean before beginning its final landfall along the rocky shores of southern Chile at 20:49 UT. The shadow is now an elongated ellipse and its increasing ground velocity brings with it a corresponding decrease in the duration of totality. It is mid-winter in the Andes so clouds and high mountain peaks threaten to block views of the total eclipse. Nevertheless some hearty eclipse observers will find Argentina's tourist village of El Calafate a prime destination for the eclipse. The Sun's altitude is only 1° during the 2 minute 47 second total phase, but the lake may offer an adequate line-of-site to the eclipse hanging just above the rugged Andes skyline.

The path ends in southern Argentina when the umbra slips off Earth's surface as it returns to space (20:52 UT). Over the course of 2 2/3 hours, the umbra travels along a track approximately 11,100 km long that covers 0.48% of Earth's surface area. It will be 29 months before the next total solar eclipse occurs on 2012 Nov 13.

Path coordinates and central line circumstances are presented in Table 4. Local circumstances for a number of cities are listed in Table 5. All times are given in Universal Time. The Sun's altitude and azimuth, the eclipse magnitude and obscuration are all given at the instant of maximum eclipse.

This is the 27th eclipse of Saros 146 (Espenak and Meeus, 2006). The series began on 1541 Sep 19 with the first of an unusually long series of 22 partial eclipses. The first central eclipse was total with a maximum duration of 4.1 minutes on 1938 May 29. Subsequent total eclipses in the series have seen an increase in the duration of totality. The 2010 eclipse marks the longest totality of Saros 146 because future durations will decrease. The series produces the first of 4 hybrid eclipses on 2172 Oct 17. The remaining 24 central eclipses of Saros 141 are all annular and span the period from 2244 Dec 01 to 2659 Aug 10. The series ends with a set of 13 partial eclipses the last of which occurs on 2893 Dec 29.

In all, Saros 146 produces 35 partial, 13 total, 4 hybrid and 24 annular eclipses. Complete details for the series can be found at:

eclipse.gsfc.nasa.gov/SEsaros/SEsaros146.html

Complete details including many tables, maps and weather prospects can be found in the NASA 2010 eclipse bulletin (Espenak and Anderson, 2008) and online at:

eclipse.gsfc.nasa.gov/SEmono/TSE2010/TSE2010.html

Finally, a web-based zoomable map of the 2010 total eclipse path is available plotted on Google maps at:

eclipse.gsfc.nasa.gov/SEgoogle/SEgoogle2001/SE2010Jul11Tgoogle.html


and


Total Lunar Eclipse of December 21
The last lunar eclipse of 2010 is especially well placed for observers throughout North America. The eclipse occurs at the Moon's descending node in eastern Taurus, four days before perigee.

The Moon's orbital trajectory takes it through the northern half of Earth's umbral shadow. Although the eclipse is not central, the total phase still lasts 72 minutes. The Moon's path through Earth's shadows as well as a map illustrating worldwide visibility of the event are shown in Figure 4. The timings of the major eclipse phases are listed below.

Penumbral Eclipse Begins: 05:29:17 UT
Partial Eclipse Begins: 06:32:37 UT
Total Eclipse Begins: 07:40:47 UT
Greatest Eclipse: 08:16:57 UT
Total Eclipse Ends: 08:53:08 UT
Partial Eclipse Ends: 10:01:20 UT
Penumbral Eclipse Ends: 11:04:31 UT
At the instant of greatest eclipse (08:17 UT) the Moon lies near the zenith for observers in southern California and Baja Mexico. At this time, the umbral magnitude peaks at 1.2561 as the Moon's southern limb passes 2.8 arc-minutes north of the shadow's central axis. In contrast, the Moon's northern limb lies 8.1 arc-minutes from the northern edge of the umbra and 34.6 arc-minutes from the shadow center. Thus, the southern half of the Moon will appear much darker than the northern half because it lies deeper in the umbra. Since the Moon samples a large range of umbral depths during totality, its appearance will change dramatically with time. It is not possible to predict the exact brightness distribution in the umbra, so observers are encouraged to estimate the Danjon value at different times during totality (see Danjon Scale of Lunar Eclipse Brightness). Note that it may also be necessary to assign different Danjon values to different portions of the Moon (i.e., north vs. south).

During totality, the winter constellations are well placed for viewing so a number of bright stars can be used for magnitude comparisons. Pollux (mv = +1.16) is 25° east of the eclipsed Moon, while Betelgeuse (mv = +0.45) is 16° to the south, Aldebaran (mv = +0.87) is 20° to the west, and Capella (mv = +0.08) is 24° to the north.

The entire event is visible from North America and western South America. Observers along South America's east coast miss the late stages of the eclipse because they occur after moonset. Likewise much of Europe and Africa experience moonset while the eclipse is in progress. Only northern Scandinavians can catch the entire event from Europe. For observers in eastern Asia the Moon rises in eclipse. None of the eclipse is visible from south and east Africa, the Middle East or South Asia.

Table 6 lists predicted umbral immersion and emersion times for 20 well-defined lunar craters. The timing of craters is useful in determining the atmospheric enlargement of Earth's shadow (see Crater Timings During Lunar Eclipses).

The December 21 total lunar eclipse belongs to Saros 125 a series of 72 eclipses in the following sequence: 17 penumbral, 13 partial, 26 total, 9 partial, and 7 penumbral lunar eclipses (Espenak and Meeus, 2009). Complete details for the series can be found at:

eclipse.gsfc.nasa.gov/LEsaros/LEsaros125.html
 

Latest posts

Back
Top