# Find a Square Matrix such that sum of elements in every row and column is K

Given two integers **N** and **K**, the task is to find an **N** x **N** square matrix such that sum of every row and column should be equal to **K**. **Note** that there can be multiple such matrices possible. Print any one of them.**Examples:**

Input:N = 3, K = 15Output:

2 7 6

9 5 1

4 3 8Input:N = 3, K = 7Output:

7 0 0

0 7 0

0 0 7

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the

DSA Self Paced Courseat a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.In case you wish to attend

live classeswith experts, please referDSA Live Classes for Working ProfessionalsandCompetitive Programming Live for Students.

**Approach:** An **N x N** matrix such that each left diagonal element is equal to **K** and rest elements are **0** will satisfy the given condition. In this way, the sum of the elements of the each row and column will be equal to **K**.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to print the` `// required matrix` `void` `printMatrix(` `int` `n, ` `int` `k)` `{` ` ` `for` `(` `int` `i = 0; i < n; i++) {` ` ` `for` `(` `int` `j = 0; j < n; j++) {` ` ` `// Print k for the left` ` ` `// diagonal elements` ` ` `if` `(i == j)` ` ` `cout << k << ` `" "` `;` ` ` `// Print 0 for the rest` ` ` `else` ` ` `cout << ` `"0 "` `;` ` ` `}` ` ` `cout << ` `"\n"` `;` ` ` `}` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 3, k = 7;` ` ` `printMatrix(n, k);` ` ` `return` `(0);` `}` |

## Java

`// Java implementation of the approach` `import` `java.util.*;` `class` `GFG` `{` `// Function to print the required matrix` `static` `void` `printMatrix(` `int` `n, ` `int` `k)` `{` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++)` ` ` `{` ` ` `for` `(` `int` `j = ` `0` `; j < n; j++)` ` ` `{` ` ` `// Print k for the left` ` ` `// diagonal elements` ` ` `if` `(i == j)` ` ` `System.out.print(k + ` `" "` `);` ` ` `// Print 0 for the rest` ` ` `else` ` ` `System.out.print(` `"0 "` `);` ` ` `}` ` ` `System.out.print(` `"\n"` `);` ` ` `}` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `n = ` `3` `, k = ` `7` `;` ` ` `printMatrix(n, k);` `}` `}` `// This code is contributed by Princi Singh` |

## Python3

`# Python3 implementation of the approach` `# Function to print the` `# required matrix` `def` `printMatrix(n, k) :` ` ` `for` `i ` `in` `range` `(n) :` ` ` `for` `j ` `in` `range` `(n) :` ` ` `# Print k for the left` ` ` `# diagonal elements` ` ` `if` `(i ` `=` `=` `j) :` ` ` `print` `(k, end ` `=` `" "` `);` ` ` `# Print 0 for the rest` ` ` `else` `:` ` ` `print` `(` `"0"` `, end ` `=` `" "` `);` ` ` ` ` `print` `();` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `n ` `=` `3` `; k ` `=` `7` `;` ` ` `printMatrix(n, k);` `# This code is contributed by AnkitRai01` |

## C#

`// C# implementation of the approach` `using` `System;` ` ` `class` `GFG` `{` `// Function to print the required matrix` `static` `void` `printMatrix(` `int` `n, ` `int` `k)` `{` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `{` ` ` `for` `(` `int` `j = 0; j < n; j++)` ` ` `{` ` ` `// Print k for the left` ` ` `// diagonal elements` ` ` `if` `(i == j)` ` ` `Console.Write(k + ` `" "` `);` ` ` `// Print 0 for the rest` ` ` `else` ` ` `Console.Write(` `"0 "` `);` ` ` `}` ` ` `Console.Write(` `"\n"` `);` ` ` `}` `}` `// Driver code` `public` `static` `void` `Main(String[] args)` `{` ` ` `int` `n = 3, k = 7;` ` ` `printMatrix(n, k);` `}` `}` `// This code is contributed by PrinciRaj1992` |

## Javascript

`<script>` `// javascript implementation of the approach` `// Function to print the required matrix` `function` `printMatrix(n , k)` `{` ` ` `for` `(i = 0; i < n; i++)` ` ` `{` ` ` `for` `(j = 0; j < n; j++)` ` ` `{` ` ` `// Print k for the left` ` ` `// diagonal elements` ` ` `if` `(i == j)` ` ` `document.write(k + ` `" "` `);` ` ` `// Prvar 0 for the rest` ` ` `else` ` ` `document.write(` `"0 "` `);` ` ` `}` ` ` `document.write(` `"</br>"` `);` ` ` `}` `}` `// Driver code` `var` `n = 3, k = 7;` `printMatrix(n, k);` `// This code is contributed by 29AjayKumar` `</script>` |

**Output:**

7 0 0 0 7 0 0 0 7