Happy HolidaySs Giveaway - Winners Re-Re-Re-Re-Drawn - 24 hours to Claim!

Get your HBT Growlers, Shirts and Membership before the Rush!

 Home Brew Forums > Electrical Primer for Brewers
11-04-2009, 12:17 AM   #1
CodeRage
Death by Magumba!
Feedback Score: 0 reviews

Recipes

Join Date: Aug 2007
Location: Melbourne, Fl
Posts: 2,254
Liked 33 Times on 18 Posts
Likes Given: 5

 Electrical Primer for Brewers

I've seen a lot of electrical questions pop up lately, many of them frequently asked. So I am going to share what I know and hopefully compile a reference that will answer 99% of the questions out there.

My background is in industrial control systems and system integration. Basically electrical controls for large industrial equipment. I am not an expert on residential power but I am comfortable working with it and understand it's principals. Local building codes may vary so if you are running a new service from your breaker, consult with local codes first.

*I am not going to go through all of the blanket disclaimer mumbo jumbo other than this;
Electricity will kill you dead… QUICK! So respect it.
You and you alone are responsible for burning your house down or causing yourself or others great bodily/mortal harm. So please be careful.
If you have any doubts or questions, put the wire strippers and screw driver down and seek an expert opinion.

Here is a list of important things to understand, know, and apply when working with house hold power and various electrical components of the brewery.

Electrical Fundamentals:
Volts= the potential to do work. Think of it as electrical pressure/psi.
Amps=The amount of electrons flowing through an electrical circuit. Think of it as an electrical gallons per minute.
Watts = Volts * Amps. This is the actual power a system uses.
A few terms:
Service/Supply- Where electricity is coming from
Load – Where electricity is being used/sent to
Line/Leg – one side of a 240 Volt system is usually called a Line or Leg, since there are two separate 120V services one is called Leg/Line 1 and the other Leg/Line 2.

A primer on Residential AC power:
I am going to over simplify this and omit the differences between AC and DC power for the sake of ease of understanding. It is important to note that the two are very different creatures and are not compatible.
Also 240/220 and 120/110 are interchangeable, the actual reading in your home is usually somewhere between those.

Most Residential is what is called a split 240v single phase. By the time it comes into your house from the transformer it is split into three wires and then goes into the circuit breaker.
One wire is 120V(A), another 120v(B), and Neutral. Each of these is attached to its own Bus or Bus bar. A Bus is a piece of metal where you can attach wires and devices (breakers). A fourth wire is brought in and is called Ground. There will be a rod buried in the ground close to the residence with a wire attached to it. This wire is brought into the main panel and attached to the Neutral bus and to its own bus. THIS IS THE ONLY PLACE NEUTRAL AND GROUND SHOULD BE BONDED, from that point on the twain never should meet again.
If you take a volt meter and measure from 120v(A) and Neutral, as well as 120v(B) and Neutral you will read 120 Volts. Now if you measure between 120v(A) and 120v(B) you get 240 Volts. The 120 Volt receptacles in your house are divided up into circuits and then attached to either one of the 120V A/B and Neutral.
For larger appliances like a water heater, dryer, or stove, have both 120v(A) and 120v(B) as well as ground and sometimes Neutral. These are the 240 Volt appliances.
As far as we are concerned, the ground is provided for safety. It provides a path for electricity to flow through in case of emergency. The metal shells of appliances are attached to ground so that in case a wire comes loose and touches the metal. Without this, the next person who touches the shell could have the crap shocked out of them because electricity is sitting there waiting to go somewhere. So, metal rigs and pots need to be well grounded. Plastic containers holding liquid and a heating element should have some kind of ground touching the liquid.
With the metal casing bonded to ground electricity will start to flow causing the circuit breaker to trip turning off the circuit.
This is why we don’t bond Neutral and Ground anywhere else in the house. Since Neutral is used to carry current for 110 Volt circuits you don’t want that current to be attached to anything you may touch.
Hopefully this has demystified the difference between 120V and 240V power, Neutral, and Ground.

Current Ratings and Circuit Protection:
The electrons flowing through a wire or subject to the same laws of physics just like everything else. As the electrons move the encounter friction which creates heat. The amount of friction created is subject to the size wire you use. Imagine two pieces of pipe, one is 1 inch wide and another is 6 inches wide. It is easier to push 1000 gallons a minute out of the 6 inch pipe than the 1 inch pipe because there is less friction. A wire’s AWG or Gauge is the width of a wire and the smaller the number, the larger the wire.
The reason why this relationship is important is that if too many Amps travel through a wire it starts to build heat and could get hot enough to melt/burn the protective insulation off leaving a bare wire. Worse still, the wire could get hot enough to cause whatever it may be touching to catch fire. Here is a table showing the maximum current ratings for the most common sized wires.
AWG/Max Current
14 AWG/15 Amps
12 AWG/20 Amps
10 AWG /30 Amps
8 AWG / 40 Amps
6 AWG/55 Amps

To prevent a wire from getting too hot circuit breakers and fuses are used. These guys sense how much current is passing through a wire and if the current is greater than the fuse/breaker’s rating it will open up, essentially disconnecting the over drawn circuit from power. The size of the circuit breaker or fuse is determined by the size of wire attached to it. So if 14 AWG is used, nothing larger than a 15 Amps breaker/fuse can be used. If 10 AWG were used then anything up to and including a 30 Amp breaker/fuse may be used.
Breakers and fuses are meant to save property NOT LIFE! 1 Amp is more than enough to kill you.
Once the service wire makes it to the brew rig it can be redistributed using smaller wires. The important thing to remember is every time the wire size gets smaller, it needs a fuse or breaker rated no larger than the wires maximum rating.
For example, if a 30 amp services is brought to the brew rig and a circuit for the March pumps needs no more than 15 amps then 14 AWG wire may be used. To do this though, a 15 amp fuse/breaker must be installed between the two. So the 10 AWG wire providing power will go into the supply side of a 15 Amp breaker/fuse and the 14 AWG wire going to the march pumps goes into the load side of the breaker/fuse. The 14 AWG wire is now adequately protected.

GFCI Breakers:
GFCI breakers are designed to control a maximum amount of current like regular breakers but they are also designed to monitor if current is leaking outside of the circuit. Ideally, all current leaving the breaker should return to the breaker after it has been used. When the GFCI breaker sees less current returning than going out, it assumes that current has found an alternate path to ground and trips. The thresh hold for the breaker to trip varies but it is only a few milliamps (0.001 Amps) difference.

DO NOT DEPEND ON A GFCI TO SAVE YOUR ASS! Good workmanship and clean wiring should be your primary means of safety.

Yes, a 240 Volt 2 pole breaker can be used and will maintain GFCI protection if you split the 110. Follow the directions, it will show you how.

Water Heater Elements:
Water Heater elements have 2 parts to their rating. One is Wattage and the other is Voltage.
From these two numbers, you can determine the amount of current (Amps).
Amps = Wattage rating / Voltage rating
Example: A 5500 Watt element at 240Volts will draw 22.92 Amps.
It is okay to run a 240 Volt element at 120 Volts but not vice versa.
Halving the voltage does not halve the Wattage. When halving the voltage the Watt output is divided by 4.
Example: An element rated for 5500 Watts at 240 Volts used at 120 Volts has an actual Wattage rating of 1375 Watts. To determine the current draw, divide 1375 Watts/ 120 Volts = 11.46 Amps.
To run an element at 240 Volts, one terminal is wired to 120v(A) and the other to 120v(B).
To run an element at 120 Volts, one terminal is wired to 120v(A) or 120v(B) and the other to Neutral.

To protect a device, (ie PID Controller, March Pump, Panel Lamp, etc, etc) it needs a dedicated fuse.
There are two main types of fuses, Fast Acting and Slow Blow.
Fast Acting fuses respond very quickly to over currents and should be used on devices that are very sensitive and easily damaged.
Slow Blow Fuses - Have a bit of forgiveness in them when it comes to over currents. They are designed for devices like pumps that have short periods surge current. It takes a sustained over current to cause a Slow Blow to pop.

Fuses should be rated for 125% to 150% of the rated current draw for a device.
Example: March pumps draw 1.4Amps at 120V. A proper sized slow blow fuse would fall some where between 1.4*1.25 = 1.75A and 1.4 * 1.5= 2.1A. So a 1.75 Amp or 2 Amp Slow Blow fuse would be acceptable per pump. Start on the small end and if there are nuisance blows (fuse burns for no real reason) then goto the next size.

Suggested fuse sizes:
PID Controllers - 0.25A Fast Acting (Auber suggests 1A Slow Blow but that is way too much in my opinion.)
March Pumps - 1.75 to 2 Amp Slow Blow.
SSR - For the supply side of the SSR use a Fast Acting fuse equal to or less than the rating of the SSR. Devices being switched by the SSR will need individual fuses should they be protected.

The next installment will be on components used for controlling elements and pumps. If there is any interest that is. Hope it helps.

 Brewery Service And Power Distribution Model.pdf (14.0 KB, 6297 views)
__________________
Brutus 20e build | Electrical Primer for Brewers | Auber SYL-2362A2 PID Install & Config
So as I am walking out the door this morning I think to my self:
"self, going to work on Monday is like knowing you're going to get kicked in the nuts. You just don't know when or by who"

15
People Like This
11-04-2009, 01:14 AM   #2
Parker36
Feedback Score: 0 reviews
Recipes

Join Date: Sep 2007
Location: Lesotho
Posts: 4,777
Liked 22 Times on 20 Posts
Likes Given: 4

Excellent write up. Look forward to the next installment. I'm sure this will get stickied in the near future.

__________________

11-04-2009, 01:26 AM   #3
BrewBeemer
Feedback Score: 0 reviews
Recipes

Join Date: Feb 2006
Location: island, in an atoll
Posts: 3,511
Liked 21 Times on 21 Posts
Likes Given: 7

All good points as I have seen it may times on this forum that people attach the ground to neutral at their brew rig vs PANEL ONLY which is by NEC Code. I was hammered about mentioning NEC code many times in the past hence not speaking up about code and becoming silent.
Now one thing you did not mention is many older homes were built with the dryer attaching the neutral to the ground, this allowing 120 volt items like the motor and clock timer to run on 120 volts with a 240 volt feed to the dryer unit with a 3 prong plug vs 4 prong with a seperate neutral.
You should mention derating the cords capacity to the brewing unit due to cord length as well the cords base insulating materials temp ratings.
A 29 year IBEW member.

__________________

Bier Jagdwaffe... Bier 30 zeit.....~~=o&o>..........

11-04-2009, 02:12 AM   #4
Torg
Feedback Score: 0 reviews
Recipes

Join Date: Oct 2009
Location: DFW, TX
Posts: 151
Liked 4 Times on 4 Posts
Likes Given: 1

The Neutral wire is the other half of the 120V circuit. Or to be exact each side of the 120V is directly a mirror of the other. Write a wave on a piece of paper, intersect it horizontally at the midpoint. Put a horizontal line under it. Now draw another wave, mirror to the first, under the line. The middle line is the neutral and each wave is a 120VAC circuit. Since it part of the circuit can you see why you should not use it for ground?

BTW electricity is not the flow of electrons. It is electromagnetic radiation, the field that flow creates (the electrons actually go backwards). But it is easier to illustrate electricity as a flow of electrons then to explain it is glowing footballs that you can not see, that really have no height. This is also why you get shocked if you go close to a high voltage line. And this is why you can get electrocuted without actually touching the wire.

But what CodeRage points out are good things to follow. If you do not you could start a fire or shock yourself to death. Keep in mind you are using a liquid (wort) near electricity.

__________________

11-04-2009, 02:25 AM   #5
CodeRage
Death by Magumba!
Feedback Score: 0 reviews

Recipes

Join Date: Aug 2007
Location: Melbourne, Fl
Posts: 2,254
Liked 33 Times on 18 Posts
Likes Given: 5

Quote:
 Originally Posted by Torg The Neutral wire is the other half of the 120V circuit. Or to be exact each side of the 120V is directly 180 degrees opposite and the Neutral equals the 0 point where it crosses. Write a wave on a piece of paper, intersect it horizontally at the midpoint. The top is one 120V the bottom the other and the midpoint your neutral. Since it part of the circuit can you see why you should not use it for ground? BTW electricity is not the flow of electrons. It is the field that flow creates (the electrons actually go backwards). But it is easier to illustrate electricity as a flow of electrons then to explain it is glowing footballs that you can not see. How far above the wire is voltage, how much is in it (think of dots and filling in the footballs) is amperage. But what CodeRage points out are good things to follow. If you do not you could start a fire or shock yourself to death. Keep in mind you are using a liquid (wort) near electricity.
Yeah, I omitted the center tap phase shift of the 240V system on purpose. It's a lot of information to cover and for practical purposes here it isn't needed.
You may also want to check your text books on current again. There is hole flow and electron flow, one moves in the opposite direction of the other. The positive to negative system is hole flow. Instead to correct the electron flow, they just called it hole flow. It absolutely is all about the flow of electrons.
What you are describing is induction and have the two confused.

This isn't a place to prove how much some one knows about electrical theory. Just a down and dirty explanation of how to use it for our applications.
__________________
Brutus 20e build | Electrical Primer for Brewers | Auber SYL-2362A2 PID Install & Config
So as I am walking out the door this morning I think to my self:
"self, going to work on Monday is like knowing you're going to get kicked in the nuts. You just don't know when or by who"

11-04-2009, 03:05 AM   #6
CodeRage
Death by Magumba!
Feedback Score: 0 reviews

Recipes

Join Date: Aug 2007
Location: Melbourne, Fl
Posts: 2,254
Liked 33 Times on 18 Posts
Likes Given: 5

Brewbeamer,
Hey thanks guy. I know you have pretty exacting standards so a quasi endorsement from you means quite a bit . I'll keep those bits in mind on the next installment.

__________________
Brutus 20e build | Electrical Primer for Brewers | Auber SYL-2362A2 PID Install & Config
So as I am walking out the door this morning I think to my self:
"self, going to work on Monday is like knowing you're going to get kicked in the nuts. You just don't know when or by who"

Ksubzro Likes This
11-04-2009, 03:10 AM   #7
pickles
Feedback Score: 0 reviews

Recipes

Join Date: Feb 2008
Location: Columbus
Posts: 2,004
Liked 48 Times on 40 Posts
Likes Given: 23

Great information! I can't wait to read the next addition. I've been following a lot of the electric rig build threads and it's a bit scary that people are taking on these projects and have no sense of how their electrical system operates. Thanks for this tutorial.

__________________

11-04-2009, 03:22 AM   #8
samc
Feedback Score: 1 reviews
Recipes

Join Date: Aug 2008
Location: Portland OR
Posts: 5,420
Liked 55 Times on 52 Posts
Likes Given: 29

Quote:
 Originally Posted by CodeRage Once the service wire makes it to the brew rig it can be redistributed using smaller wires. The important thing to remember is every time the wire size gets smaller, it needs a fuse or breaker rated no larger than the wires maximum rating. For example, if a 30 amp services is brought to the brew rig and a circuit for the March pumps needs no more than 15 amps then 14 AWG wire may be used. To do this though, a 15 amp fuse/breaker must be installed between the two. So the 10 AWG wire providing power will go into the supply side of a 15 Amp breaker/fuse and the 14 AWG wire going to the march pumps goes into the load side of the breaker/fuse. The 14 AWG wire is now adequately protected.
Great info - one question, if you don't protect the smaller wire to the March pump with a fuse or breaker what are the potential consequences? Fried pump & wire? or Death to brewer standing next to it? I am thinking I need to redo my control box. And do you just put a fuse on the hot lead side after the SSR or at what point?

Thanks
__________________

11-04-2009, 03:24 AM   #9
Torg
Feedback Score: 0 reviews
Recipes

Join Date: Oct 2009
Location: DFW, TX
Posts: 151
Liked 4 Times on 4 Posts
Likes Given: 1

Quote:
 Originally Posted by CodeRage This isn't a place to prove how much some one knows about electrical theory. Just a down and dirty explanation of how to use it for our applications.
I should have been more precise. And you are correct. I was attempting to point out why induction can kill as well. It was more about respecting the power then a display of knowledge. I am sorry it sounded that way.
__________________

11-04-2009, 05:14 AM   #10
Scut_Monkey
Feedback Score: 0 reviews
Recipes

Join Date: Jan 2009
Location: Pittsburgh, Pennsylvania
Posts: 2,685
Liked 13 Times on 13 Posts

Thank you very much for the write up. I think it's an excellent idea for HBT and I think it most definitely should be STICKIED especially if you are going to relate this more to our brewing applications.

However, I am a little confused on one particular aspect, the neutral line. From your description it seems that the neutral comes in from the main service line and then goes into the breaker panel where it is then attached to the "main" ground wire and this is the only area in the house where they meet. I think I have this part correct but correct me if I do not. Where I become more confused is why someone would attach a groundwire to the neutral line at a particular load. Is this ever acceptable and why would you not simply attach the ground to a ground wire? Are people doing this if they did not run a ground wire to their brewstand? Just confused is all.

__________________